SHORT COMMUNICATION

Yoshie Terashima • Katsutoshi Ogiwara Masatoshi Kojima • Chikako Kubo Akihiro Seki • Azusa Fujiie

Primers based on specific ITS sequences of rDNAs for PCR detection of two fairy ring fungi of turfgrass, *Vascellum pratense* and *Lycoperdon pusillum*

Received: June 1, 2001 / Accepted: March 21, 2002

Abstract Vascellum pratense and Lycoperdon pusillum cause fairy ring disease on turfgrass in golf courses. For effective disease control, detection of the mycelia of the two fungi in the soil is important. Comparing the sequence data of the internal transcribed spacer (ITS) regions of these fungi with each other and with those from the database, we designed four pairs of polymerase chain reaction (PCR) primers for each fungus. The primers allowed amplification of the DNA of the objective fungi singly, but of no other DNA from field-collected mushroom-forming fungi or soilborne turfgrass pathogenic fungi.

Key words Fairy rings · Internal transcribed spacer (ITS) · *Lycoperdon pusillum* · Polymerase chain reaction · *Vascellum pratense*

Fairy rings of established turf are caused by any of the 60 species of basidiomycetes, the mushroom-forming fungi (Dernoeden 1995). The fungi cause circles of mushrooms, rings or arcs of dark green grass due to luxuriant growth, or rings of dead grass (Couch 1995). In Japan, the main species

Y. Terashima (🖂)

Chiba Prefectural Forest Research Center, 1887-1 Haniya, Sanbu-machi, Chiba 289-1223, Japan Tel. +81-475-88-0505; Fax +81-475-88-0286

e-mail: terashi.yoshie@nifty.ne.jp K. Ogiwara · A. Seki

Kubota Corporation Advanced Technology Laboratory, Ibaraki, Japan

M. Kojima

Industrial Research Institute of Chiba Prefecture, Chiba, Japan

C. Kubo · A. Fujiie Chiba Prefectural Agriculture Research Center, Chiba, Japan of fairy ring fungi in golf courses are Lycoperdon perlatum Pers., L. gemmatum Batch, Marasmius oreades (Bolt.: Fr.) Fr., and Lepista sordida (Schum.: Fr.) Sing. (Lepista subnuda Hondo) (Tani 1991; Phytopathological Society of Japan 2000). Moreover, two other fungi, Vascellum pratense (Pers. Em. Quél.) Kreisel and Lycoperdon pusillum Batsch: Pers., were reported to cause death in Agrostis spp., which are commercially important as the greens of golf courses (Terashima and Fujiie 1999). The mycelia of each fungus have an ecologically different lifestyle in the soil, and both fungi form fruit-bodies just before causing turfgrass to die (Terashima and Fujiie 1999). To control the diseases more effectively in the early stages by either biological or chemical methods, identifying the species of the causative mycelia and detecting the existence of the mycelia before recognizing the fruit-bodies are important.

Molecular techniques offer sensitive means for detecting soil-borne fungi. The internal transcribed spacers (ITS) of nuclear rDNA (rRNA genes) are used especially to analyze molecular differences among fungi, because inter- and intraspecific variation is observed in the ITS of related fungal species. The ITS of rDNA is nested between conserved sequences of the 18S, 5.8S, and 28S subunits, and is present in multiple, tandemly arranged copies in fungal genomes. We aimed to design polymerase chain reaction (PCR) primers to detect the mycelia of the fairy ring fungi *V. pratense* and *L. pusillum* separately using the ITS regions.

The mycelial isolates and fruit-bodies of the two fairy ring fungi (*V. pratense* and *L. pusillum*), five other mushroom-forming fungi, and eight pathogenic fungi (Phytopathological Society of Japan 2000), four Basidiomycotina, two Ascomycotina, and two Deuteromycotina, were used for DNA extraction (Table 1). For the DNA sequences, the *V. pratense* isolate, Vp1, and *L. pusillum* isolate, Lp1, were used. The isolates of the mushroom-forming fungi were grown in modified Czapek–Dox liquid medium, which contains 15g glucose, 15g sucrose, 5g polypeptone (Nihon, Osaka, Japan), 5g yeast extract (Difco, Michigan, USA), 1g KH₂PO₄, 0.5g MgSO₄·7H₂O, 0.5g KCl, and 0.01g FeSO₄·7H₂O in 11 distilled and deionized water (ddw). The pathogenic fungi were grown in PS liquid medium,

Parts of this study were presented orally at the 44th annual meeting of the Mycological Society of Japan held at Nara in 2000 and as a poster at the annual meeting of the Japanese Society of Turfgrass Science held at Utsunomiya in 2000

Table 1	•	Myceli	al iso	lates	or fr	uit-b	odi	es of	mus	hroom-	form	ing f	fungi	and	pat	hogenic	fungi	used	l for	D	NA	extract	ion
---------	---	--------	--------	-------	-------	-------	-----	-------	-----	--------	------	-------	-------	-----	-----	---------	-------	------	-------	---	----	---------	-----

Fungus		Disease name	Isolate code	DNA	Origin					
				source	Location in Japan	Year	Turfgrass	Source for mycelial isolation		
Mu	shroom-forming fungus									
1	Vascellum pratense	Fairy rings	Vp1	Mycelia	Chiba	1996	(Unknown)	Fruit-body		
2	Vascellum pratense	Fairy rings	Vp2	Mycelia	Chiba	1996	(Unknown)	Fruit-body		
3	Vascellum pratense	Fairy rings	Vp3	Mycelia	Chiba	1996	(Unknown)	Fruit-body		
4	Vascellum pratense	Fairy rings	Vp4 Vp6	Mycelia	Chiba	1996	(Unknown)	Fruit-body		
6	Vascellum pratense	Fairy rings	Vp0 Vp7	Mycelia	Chiba	1998	Agrostis sp.	Fruit-body		
7	Vascellum pratense	Fairy rings	Vp8	Mycelia	Chiba	1998	Agrostis sp.	Fruit-body		
8	Vascellum pratense	Fairy rings	Vp9	Mycelia	Chiba	1998	Agrostis sp.	Fruit-body		
9	Vascellum pratense	Fairy rings	Vp10	Mycelia	Chiba	1998	Zoysia matrella	Fruit-body		
10	Vascellum pratense	Fairy rings	Vp11	Mycelia	Chiba	1998	Z. matrella	Fruit-body		
11	Vascellum pratense	Fairy rings	Vp12	Mycelia	Chiba	1998	Z. matrella	Fruit-body		
12	Vascellum pratense	Fairy rings	Vp13	Mycelia	Chiba	1998	Agrostis sp.	Fruit-body		
13	Vascellum pratense	Fairy rings	Vp14 Vp16	Mycelia	Chiba	1998	Z. matrella	Fruit-body Myseliel cord		
14	Vascellum pratense	Fairy rings	Vp10 Vp19	Mycelia	Chiba	2000	Agrosus sp. Z matrella	Fruit-body		
16	Vascellum pratense	Fairy rings	Vp22	Mycelia	Chiba	2000	Poa pratensis	Fruit-body		
17	Vascellum pratense	Fairy rings	· p==	Fruit-body	Chiba	2000	Z. matrella	1 run oouy		
18	Vascellum pratense	Fairy rings		Fruit-body	Chiba	2000	Z. matrella			
19	Vascellum pratense	Fairy rings		Fruit-body	Chiba	2000	Z. matrella			
20	Vascellum pratense	Fairy rings		Fruit-body	Chiba	1998	Agrostis sp.			
21	Vascellum pratense	Fairy rings		Fruit-body	Chiba	1998	Z. matrella			
22	Vascellum pratense	Fairy rings		Fruit-body	Chiba	1998	Agrostis sp.			
23	v ascenum pratense I vcoperdon pusillum	Fairy rings	I n1	Fruit-body Mycelia	Chiba	2000	(Unknown) Agrostis sp	Fruit-body		
25	Lycoperdon pusillum	Fairy rings	Lp1	Mycelia	Chiba	1998	Agrostis sp.	Fruit-body		
26	Lycoperdon pusillum	Fairy rings	Lp3 Lp4	Mycelia	Chiba	1998	Agrostis sp.	Fruit-body		
27	Lycoperdon pusillum	Fairy rings	Lp5	Mycelia	Chiba	1998	Agrostis sp.	Fruit-body		
28	Lycoperdon pusillum	Fairy rings	Lp6	Mycelia	Chiba	1998	Z. matrella	Fruit-body		
29	Lycoperdon pusillum	Fairy rings	Lp7	Mycelia	Chiba	1998	Z. matrella	Fruit-body		
30	Lycoperdon pusillum	Fairy rings	Lp9	Mycelia	Chiba	1998	Agrostis sp.	Fruit-body		
31	Lycoperdon pusillum	Fairy rings	Lp10B	Mycelia	Chiba	1998	Agrostis sp.	Fruit-body		
32	Lycoperdon pusillum	Fairy rings	Lp10C	Mycelia	Chiba	1998	Agrostis sp.	Mycelial cord		
34	Lycoperdon pusilium	Fairy rings	Lp10D	Mycelia	Chiba	1998	Agrostis sp.	Fruit-body		
35	Lycoperdon pusillum	Fairy rings	Lp13	Mycelia	Chiba	2001	Z. matrella and Lolium perenne	Fruit-body		
36	Lycoperdon pusillum	Fairy rings	Lp15	Mycelia	Chiba	2001	Z. matrella	Fruit-body		
37	Lycoperdon pusillum	Fairy rings	Lp16	Mycelia	Chiba	2001	Z. matrella	Fruit-body		
38	Lycoperdon pusillum	Fairy rings	Lp17	Mycelia	Chiba	2001	P. pratensis	Fruit-body		
39	Lycoperdon pusillum	Fairy rings	Lp18	Mycelia	Chiba	2001	P. pratensis	Fruit-body		
40	Lycoperdon pusillum	Fairy rings	Lp19	Mycelia	Chiba	2001	P pratensis	Fruit-body		
42	Lycoperdon pusillum	Fairy rings	Lp20 Lp21	Mycelia	Chiba	2001	Z matrella and	Fruit-body		
43	Lycoperdon pusillum	Fairy rings	2921	Fruit-body	Chiba	2001	<i>Lolium perenne</i> <i>Z. matrella</i> and	That body		
							L. perenne			
44	Lycoperdon sp.		Ly1	Mycelia	Chiba	2000	Z. matrella	Fruit-body		
45	Lycoperdon sp.	Deime nin en	Ly2	Mycelia	Chiba	2000	Z. matrella	Fruit-body		
40	Conocybe lactea	Fairy Tings	CI5	Mycelia	Chiba	1000	Z. mairella Z. matrolla	Fruit body		
48	Conocybe lactea		Cl10	Mycelia	Chiba	1999	Z. matrella	Fruit-body		
49	Conocybe lactea		As1	Mycelia	Chiba	1999	Z. matrella	Fruit-body		
50	Agaricus campestris		Ac5	Mycelia	Chiba	1999	Z. matrella	Fruit-body		
Pat	hogenic fungus of turfgrass									
51	Rhizoctonia solani AG2-2 LP	Rhizoctonia	Large patch-①		Chiba	1992	Z. matrella			
52	Rhizoctonia solani AG2-2 LP	rot	92-7-HR-2		Chiba	1992	Z. japonica			
53	Rhizoctonia solani AG2-2 IIIVB	Summer blight	93-8-BP-1		Chiba	1993	Agrostis sp.			
54	Rhizoctonia solani AG2-2 IIIVB	Summer blight	93-6-BR-1		Chiba	1993	Agrostis sp.			
55	Sclerotinia homoeocarpa	Dollar spot	T-91351		Chiba	1991	Agrostis sp.			
50 57	Scierotinia homoeocarpa	Dollar spot	92-(4)-7		Chiba	1992	Agrostis sp.			
57 58	Curvularia sp.	leaf blight	950801		Chiba	1995	Agrostis sp.			
50	Curvularia sp.	leaf blight	94_9_dog 10 2		Chiba	1995	Agrostis sp.			
59	Curvularia sp.	leaf blight	74-7-00g 19-5		(Unknow	1994	Agrosus sp.			
61	Caratohasidium sp	leaf blight	03 8 W/I 5		Chiba	1002	7 matralla			
62	(binucleate <i>Rhizoctonia</i> AG-D) <i>Ceratobasidium</i> sp	patch Winter patch	94-3-VP-9		Chiba	1995	Z. muireitu Aarostis sp			
63	(binucleate <i>Rhizoctonia</i>)	Anthracnose	K9968		Gifu	1994	Agrostis sp.			
64	Gaeumannomyces graminis	Take-all	94-1-Gaeu-1		Chiba	1994	Agrostis sp.			

ITS1-F

1' CTTGGTCATTTAGAGGAAGTAAAAGTCGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTATTGAATACTCTTGATGAGTTGTAGCTGGCTCTCCCCGGGCATGTGCACGCTTG

1″ CTTGGTCATTTAGAGGAAGTAAAAGTCGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTATTGAATATTCTTGATGGGTTGTAGCTGGCTCTTCGGGGCATGTGCACGCCTG
HIN-F2
121' TCTTGATTTTATTCATCCACCTGTGCACCCTTTTGTAGTCTTGGGGGGTTGAAAGCAGTCGACTATCGGATGGC-TATGGCTTTTCCGGATGGAGAAATGCTGAGAAATGCTGAGAGAATGCTGAGAAATGCTGAGAGAATGCTGAGAAATGCTGAGAGAATGCTGAGAAATGCTGAGAGAATGCTGAGAGAATGCTGAGAGAATGCTGAGAGAATGCTGAGAGAATGCTGAGAGAATGCTGAGAGAATGCTGAGAGAATGCTGAGAGAATGCTGAGAGAGTGTGAGAGAATGCTGAGAGAGTGTGAGAGAATGCTGAGAGAATGCTGAGAGAGTGTGAGAGAATGCTGAGAGAGTGTGAGAGAATGCTGAGAGAGTGTGAGAGAATGCTGAGGAGATGCTGAGAGAGTGTGAGAGAATGCTGAGGAGATGTGAGAGAATGCTGAGGAGATGCTGAGGAGAGTGTGAGAGAGTGTGAGAGAGTGTGAGGAGATGCTGAGGAGATGCTGAGGAGAGTGTGAGAGAGTGTGAGGAGAGTGTGAGGAGAGTGTGAGGAG
121" TCTTGACTTTATTCATCCACCTGTGCACCTTTTGTAGTCTTGGGGGGTTGAGAGCAGTCAATTATCGGATGGCTTATAGCCTTTTCGGATGGAGGAATGCTGAGTGC—GAAAGCATACA HIN-F1 CHI-F2
240' GCTCTTCTCA-AATGACTTGCATACCCTT-GAGTACTATGTATTCATATACCACGTCGTATGTTGTAGAATGTGATCAATGGGTCTATGTACCAATAATAATCATATAACAACTTTC
***** **** ******* * *** * ************
239" GCTCTCCTCAGAATGACTTGTAAACCTCTCCCCTCGAGTACTATGTATTCATATACCACATAGTATGTTGTAGAATGTGATCAATGGGCCTCTGTGCCTATAATAATCATATACAACTTTC CHI-F1
354' AGCAACGGATCTCTTGGCTCTCGCATCGATGAAGAACGCAGCNGAAATGCGATAAGTAATGTGAATTGCANGAATTCAGTGAATCATCGAATCTTTGAACGCACCTTGCGCTCCTTGGTA

359" AGCAACGGATCTCTTGGCTCTCGCATCGATGAAGAACGCAGCNGAAATGCGATAAGTAATGTGAATTGCA-GAATTCAGTGAATCATCGAATCTTTGAACGCACCTTGCGCTCCTTGGTA HIM-R2 HIM-R3
474' TTCCGAGGAGCATGCCTGTTTGAGTGTCATTAAATTCTCAACCCCTCCAGTTGTGATGGGGCTTGGATATGGGAGTTNTGCNGGGTNCCTTTATCAGTAAAGGTCAGCTC

478" TTCCGAGGAGCATGCCTGTTTGAGTGTCATTAAATTCTCAACTCCTCTAGCTTTIGCGAGCTATGATGGGGCTTGGATTTGGGAGTT-TGCGGGCCTTTATTAAT-AAGGTCAGCTC CHI-R1 CHI-R2
584' TCCTGAAATACATTAGCGGAACCGTTTGCAGTCCCGTCACTAGTGTGATAATTATCTACACTGTGATGACTGCTCTCTGACTAGTCGCTCACTGCCGCTCACTGCCCGCCC
593 TCCTGAAATGCATTAGCGGAACCGTTTGCAGTCCCGTCACTAGTGTGATAATTATCTACACTGTGATGATGCTCTCTGATCAGTTCAGCTGCTAATCGTCCACTATGGACAACACTTAA
704' TGAACTTCTTGACCTCAAATCAGGTAGGACTACCCGCTGAACTTAAGCATATCAATAAGCGGAGGAAAAGAAACTAACAAGGATTCCCCTAGTAACTGCGAGTGAAGCGGGAAAAGCTCA

713" TGAACTTCTTGACCTCAAATCAGGTAGGACTACCCGCTGAACTTAAGCATATCAATAAGCGGAGGAAAAGAAACTAACAAQGATTCCCCTAGTAACTGCGAGTGAAGCGGGAAAAGCTCA ITS4-B
824' AATTTAAAATCTGGCAGTCTTTGGCTGTCCGAGTTGTAATCTAGAGAAGTGATGCCCGCGCTGGACCGTGTACAAGTCTCCTG
************ **** **** ****
833" AATTTAAAATCTGGCGGTCTCTGGCCGTCCGAGTTGTAATCTAGAGAAGTGATGCCCGCGCTGGACCGTGTACAAGTCTCCTG

Fig. 1. Nucleotide sequences of two internal transcribed spacer (ITS) regions including parts of small-subunit ribosomal RNA gene (SrDNA) and large-subunit ribosomal RNA gene (LrDNA), and 5.8S rDNA of *Vascellum pratense (upper row*, 906 bp) and *Lycoperdon pusillum (lower row*, 915 bp). *Asterisks* show that the nucleotides of the upper and lower rows are the same; *boxes* indicate the forward (ITS1-

F) and reverse (ITS4-B) primers used. *Solid* and *broken underlines* indicate the designed forward (HIM-F1 and HIM-F2) and reverse (HIM-R2 and HIM-R3) primers for *V. pratense*, and forward (CHI-F1 and CHI-F2) and reverse (CHI-R1 and CHI-R2) primers for *L. pusillum*, respectively

containing extract from 100g fresh potato and 20g sucrose in 11 ddw. The former were incubated at 25°–30°C for 7–14 days according to the optimum condition for each isolate, and the latter were incubated at 25°C for 3 days before harvesting. The fruit-bodies collected were freeze-dried.

The fresh mycelium was cut into pieces with a blade, and the freeze-dried fruit-body was granulated. About 100 mg of these pieces was placed in a 1.5-ml centrifuge tube, and the DNA was extracted using Isoplant (Nippon Gene, Toyama, Japan) according to the manufacturer's protocol. The ITS fragments of Vp1 and Lp1 were amplified with the primer pair, ITS1-F (5'-CTTGGTCATTTAGAGGAAGTAA-3') and ITS4-B (5'-CAGGAGACTTGTACACGGTCCAG-3'), which specifically enhanced basidiomycetes (Gardes and Bruns 1993). PCR was performed in a final aqueous volume of 25 µl containing 0.2 mM of each deoxynucleotide triphosphates (dNTP) (Ultrapure dNTP Set; Pharmacia, Uppsala, Sweden), 2.5 mM MgCl₂, 0.5 µM each primer, 1.25 U Taq DNA polymerase (Promega, Wisconsin, USA), buffer [50 mM KCl, 10 mM Tris-HCl (pH 9.0), and 0.1% (v/v) Triton X-100] supplied by the manufacturer, and 25 ng of the extracted template DNA. Reactions were carried out in a thermal cycler (Thermo processor TR-100; Taitec, Saitama, Japan) programmed as follows: 95°C for 5 min; 30 cycles of 95°C for 1 min, 53°C for 1 min and 72°C for 1 min; and 72°C for 10 min. To confirm the amplified fragments, a 3-µl portion of the products was analyzed by running in 2% agarose gels (Nusieve; BMA, Maine, USA), using 1 × TBE buffer. Gels were stained with ethidium bromide and photographed under UV light.

For cloning and sequencing, 50-µl portions of the PCR products from Vp1 and Lp1 were subjected to electrophoresis. The fragments were cut from the gel, collected using Suprec-01 (Takara, Osaka, Japan), and ligated into the pT7Blue T-Vector (Novagen, Wisconsin, USA) using DNA Ligation Kit Ver. 1.2 (Takara). Using *Escherichia coli* JM109-competent cells (Takara), the transformed colonies were selected by the color selection method. The cloned products were sequenced using the T7 promoter primer #69348-1 and the U-19mer primer #69819-1 (Novagen), and BigDye terminator with ABI PRISM 377 DNA Sequencer (Perkin-Elmer, Norwalk, CT, USA). The sequence data were aligned using the computer software Genetyx-Mac Ver. 5 (Software Development, Tokyo, Japan). The aligned sequence data were subjected to homology search among the database of the DNA Data Bank Japan (DDJB). With Genetyx-Mac, separate primers were designed to contain specific parts each for V. pratense and L. pusillum, comparing each to the other and to the highly homologous 13 fungi among those in the database. The designed primers for the two fungi were confirmed so as not to be specific for the ITS sequences of the other mushroom fungi.

The 906-bp and 915-bp nucleotide sequences of the ITS regions, including parts of small subunit rDNA and large subunit rDNA, and 5.8S rDNA from the V. pratense isolate, Vp1, and the L. pusillum isolate, Lp1 (DDBJ accession no. AB067725 and AB067724, respectively) are listed in Fig. 1. The specific primers for V. pratense, two forward (HIM-F1, 5'-TGACTTGCATACCCTTGAGT-3', and HIM-F2, 5'-GCATAGACGCATACAGCTC-3') and two reverse (HIM-R2, 5'-CATCACAACTGGAGGGGT-3', and HIM-R3, 5'-TATCCAAGCCCCATCACAACTG-3'), and those for L. pusillum, two forward (CHI-F1, 5'-GAATGACTTGTAAACCTCTCCCTCG-3', and CHI-F2, ATGTGAGGAATGCTGAGTGCGAAAG) and two reverse (CHI-R1, GCCCCATCATAGCTCGCAAAAG, and CHI-R2, AAGGCCCGCAAACTCCCAAATCCA), are also shown in Fig. 1.

The expected sizes of the fragments were amplified from all template DNAs extracted from the fungi listed in Table 1 with the universal primers ITS1 and ITS4 (White et al. 1990), and then the template DNAs were subjected to amplification with the specific primer sets designed for *V. pratense* and *L. pusillum*. Annealing temperatures were determined by shifting at every degree from 50° to 63°C. The other PCR and electrophoresis conditions were the same with those for the primers ITS-F and ITS4-B.

The four primer pairs, HIM-F1 and HIM-R2, HIM-F1 and HIM-R3, HIM-F2 and HIM-R2, and HIM-F2 and HIM-R3, amplified parts of the ITS of the V. pratense isolates at annealing temperatures ranging from 53° to 57°C. None of the other fungal isolates, including L. pusillum, the closely allied species of this fungus, or the two Lycoperdon spp. were amplified. Figure 2A shows the amplified fragments of V. pratense and the absence of other fungi with the primer pair HIM-F2 and HIM-R3 with the annealing temperature of 57°C. The four primer pairs, CHI-F1 and CHI-R1, CHI-F1 and CHI-R2, CHI-F2 and CHI-R1, and CHI-F2 and CHI-R2, amplified only parts of the ITS of the L. pusillum isolates at annealing temperatures ranging from 57° to 63° C. Figure 2B shows the amplified fragments of L. pusillum with primers CHI-F1 and CHI-R2 at the annealing temperature of 63°C.

With the pairs of primers designed for *V. pratense* and *L. pusillum*, each objective fungus was successfully detected.

Fig. 2. DNA fragments amplified with HIM-F2 and HIM-R3 (**A**) and with CHI-F1 and CHI-R2 (**B**). M, 50- to 1000-bp marker (1000, 700, 500, 400, 300, 200, 100, 50); *sample numbers* are as listed in Table 1. Annealing temperatures for **A** and **B** were 57° and 63°C, respectively

The individual fungus that is capable of developing fairy rings has a different lifestyle. Although the habitats of the mycelia of *Marasmius oreades* (Shantz and Piemeisel 1917) and *Agaricus arvensis* (Edwards 1984) in soil have been described, those of other fairy ring fungi are still unknown. A characteristic sign of fairy rings is the presence of the fruit-bodies of the associated fungi (Couch 1995); the fruitbodies are the only means for the identification of the specific fungi. The detection of the existence of the mycelia in the early stages of development is important for earlier diagnosis and effective disease control. This molecular technique might allow further fungal study in the soil and lead to effective disease control.

Acknowledgments We thank Mr. Shoichi Yoshimi, The Educational Board, Kyoto City, for identifying the *V. pratense* and *L. pusillum* fruitbodies, and Dr. Yoshito Shimono, Kaorigaoka High School, Osaka, for suggesting useful ITS primers. We are grateful to Dr. Seisaku Umemoto, the former manager of the pathology laboratory of Chiba Prefectural Agriculture Research Center, for valuable advice on turf disease, to Mr. Shin'ich Aoyagi, the former leader of the turfgrass project team of Chiba Prefectural Agriculture Research Center, and to the colleagues of the team.

References

- Couch HB (1995) Diseases of turfgrasses, 3rd edn. Krieger, Florida, pp 181–186
- Dernoeden PH (1995) Fairy rings. In: Watschke TL, Dernoeden PH, Shetlar DJ (eds) Managing turfgrass pests. Lewis, Boca Raton, pp 133–137
- Edwards PJ (1984) The growth of fairy rings of *Agaricus arvensis* and their effect upon grassland vegetation and soil. J Ecol 72:505–513
- Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes: application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118
- Phytopathological Society of Japan (2000) Common names of plant diseases in Japan (in Japanese). Japanese Plant Protection Association, Tokyo, pp 118–138
- Shantz HL, Piemeisel RL (1917) Fungus fairy rings in eastern Colorado and their effect on vegetation. J Agric Res 11:191–246
- Tani T (1991) Turfgrass diseases in golf courses: color atlas (in Japanese). Soft Science, Tokyo, pp 84–91
- Terashima Y, Fujiie A (1999) Characteristics of fairy rings caused by two species of *Lycoperdaceae* (in Japanese). J Jpn Soc Turfgrass Sci 28 (suppl 1):90–91
- White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols. Academic Press, San Diego, pp 315–322